Especialidades Luminotécnicas S.A.U Pol. Malpica c/E no 1150016 Zaragoza (SPAIN

INSTRUCTIONS MANUAL

CONSTANT CURRENT CONTROL GEAR FOR LED MODULES

Types: LCM ...-E and LCM ...-E-C2

The constant current control gears for LED modules use sensitive electronic components and should be handled with the same care as any other electronic equipment. In order to achieve a long life and correct functioning, both in the control gear and in the LED module, it is necessary to follow these manufacturer's recommendations.

SECURITY

A very low voltage installation (LVI) must be carried out whilst taking the necessary precautions in order to respect the safety of all its parts. The contact or crossing between the mains supply conductors and the very low voltage installation conductors must be avoided and the insulation between the conductors must be $>4 \mathrm{kV}$.
Maintenance and the changing of parts must be carried out by a qualified person with the mains disconnected and the instructions and current regulations must be strictly followed.

EARTH WIRE

The earth wire must be connected to the control gear and the light fixture. It is convenient to connect the metallic structure of the false ceiling (if one exists) to the earth wire.

ELECTRICAL SUPPLY

\square The voltage and frequency of the power line must be within the normal working range specified on the equipment. The polarity indicated must be respected (phase and neutral)
In 400 V triphase installations, it must be ensured that the neutral is always connected; otherwise the 400 V could reach the equipment with the consequent risks. When the installation is being carried out the load distribution between phases must be balanced as much as possible.

INSULATION TEST

If an insulation test in the circuits which supply the LED driver in the installation is carried out, it must be done applying the test voltage between the phases and the neutrals all together and the earth wire

OPERATING TEMPERATURE

It must be ensured that the maximum atmospheric temperature in the installation does not exceed the ta marked on the equipment, Under no circumstances must the tc temperature marked on the driver's casing be exceeded due to the fact that continued operation at higher temperatures produces a progressive reduction in life expectancy.

TERMINAL BLOCK AND WIRE PREPARATION
The use of only one rigid wire with a section between 0,5 and $1,5 \mathrm{~mm}^{2}$ and a stripped length $7-9 \mathrm{~mm}$ is recommended.
$.5-1,5 \mathrm{~mm}^{2}$
f a previously inserted wire is to be extracted, do not use excessive force on the connection supports to avoid breaking

INSTALATION

Placing a switch in the output of the control gear is not allowed. May cause damages in control gear and LED module.

Any procedure at LED lamp connection must be made without electrical supply.

RADIO FREQUENCE INTERFERENCES (RFI)

The mains power cables should not be crossed with the cables going to the load and separated as far as possible from these.
DIP SWITCH HANDLING
DIP switch handling once the device is working may cause its breakdown.

LOOP THROUGH POWER CONNECTIO

PROTECTION SWITCHES

Each group of control gearf for LED modules must be protected by a magnetothermical circuit breaker and a differential dedicated circuit breaker. Equipments are resistant to transient overvoltages specified in regulations, and must be installed on different circuits separated from each othe inductive loads (inductive ballasts, motors, fans etc.)

$\%$

d. Differential circuit breaker.

The function of the anti-interference filters in control gear is to divert interference to the earth wire as leakage current.
In triphase systems. Distribute the light fixtures equally between the three phases. The leakage currents will compensate each other In monophase systems. The use of a maximum of 35 control gears with each circuit breaker with 30 mA sensitivity is recommended.

Automatic circuit breaker.

d d^{N} The ignition of LED modules with these control gears is simultaneous. At the moment of connection, the equipment's capacitors create a strong pulse of current of very short duration, this is called Inrush current. The installation of a maximum number of control $\sim \tau_{2} \mathrm{~N}_{\mathrm{N}}$ gear depending on the type and characteristics of the magnetothermical protection is recommended. See table

Type	Inrush Current		Max no. of equipment per circuit breaker				
	I. Peak Time		Type B		Type C		$\begin{aligned} & \hline \text { RCCB } \\ & 30 \mathrm{~mA} \\ & \hline \end{aligned}$
	A	$\mu \mathrm{s}$	10A	16A	10A	16A	
LCM ...-E	23	240	10	13	14	22	35
LCM ...-E-C2							

CONSTANT CURRENT CONTROL GEAR FOR LED MODULES AND PROTECTION SYSTEM RESPONSE				
Type	Absence of LED module. Open circuit	Overload	Short-circuit	Overtemperature
LCM ...-E	Blocks	Blocks	It restarts when problem is solved	Blocks
LCM ...-E-C2				

Block: The driver is in protection mode. The disconnection and connection of the mains will make operate again the equipment.
WIRING DIAGRAMS

$\mathrm{L} N \oplus$

